Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The...

متن کامل

Explicit Simplicial Discretization of Distributed-Parameter Port-Hamiltonian Systems

Simplicial Dirac structures as finite analogues of the canonical Stokes-Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input-output finite-dimensional portHamiltonian systems that...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

Port-Hamiltonian discretization for open channel flows

A finite-dimensional Port-Hamiltonian formulation for the dynamics of smooth open channel flows is presented. A numerical scheme based on this formulation is developed for both the linear and nonlinear shallow water equations. The scheme is verified against exact solutions and has the advantage of conservation of mass and energy to the discrete level.

متن کامل

Geometric quantization of weak-Hamiltonian functions

The paper presents an extension of the geometric quantization procedure to integrable, big-isotropic structures. We obtain a generalization of the cohomology integrality condition, we discuss geometric structures on the total space of the corresponding principal circle bundle and we extend the notion of a polarization. 1 Big-isotropic structures Weak-Hamiltonian functions belong to the framewor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2018

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2018.02.006